Dispersion of Zinc Oxide Nanoparticles in Maxillofacial Silicone Elastomer by Ultrasonication: A Morphological Study


  • Mohammed T. Abdalqadir Department of Prosthodontics, College of Dentistry, University of Sulaimani, Kurdistan Region, Iraq. Author
  • Souza A. Faraj Department of Prosthodontics, College of Dentistry, University of Sulaimani, Kurdistan Region, Iraq. Author
  • Bruska A. Azhdar Nanotechnology Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Kurdistan Region, Iraq. Author




Maxillofacial Silicone, Nanoparticles, Ultrasonication, Zinc Oxide


Objective: Aggregation and agglomeration of nanoparticles in silicone elastomer is a common problem that adversely affects the mechanical properties of the silicone because the aggregations act as a weak and stress concentrating point within the silicone elastomer matrix. The objective of this study was to evaluate the effect of sonication on the dispersion of ZnO nanoparticles in M-511 heat vulcanized maxillofacial silicone.        

Methods: Nano-ZnO was added in concentrations of 1%, 2%, 3%, and 5% by weight to Cosmesil M-511 heat vulcanized maxillofacial silicone elastomer, after sonication of ZnO nanoparticles in ethanol for 30 minutes at room temperature, and 1%, 2%, 3%, and 5% were added by weight without sonication of ZnO nanoparticles. Then field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) tests were used to assess the efficiency of the dispersion method and to monitor the particle size of nano-ZnO.

Results: FESEM test showed a reduction in cluster size of nano-ZnO as a result of sonication. XRD and FESEM showed a homogenous dispersion of ZnO nanoparticles within the silicone matrix.

Conclusions: Based on the results of this morphological study, sonication of nano-ZnO in ethanol represented an effective and easy way to disperse nano-ZnO in a silicone elastomer matrix. This led to a superior quality nanocomposite without affecting the base material and without the need for a coupling agent or addition of any third material.


Aziz T, Waters M, Jagger R. Development of a new poly(dimethylsiloxane) maxillofacial prosthetic material. J Biomed Mater Res B Appl Biomater. 2003;65(2):252-61.

Tang E, Cheng G, Pang X, Ma X, Xing F. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property. Colloid Polym Sci. 2006;284(4):422-8.

Han Y, Kiat-amnuay S, Powers JM, Zhao Y. Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent. 2008;100(6):465-73.

Eschbach J, Rouxel D, Vincent B, Mugnier Y, Galez C, Le Dantec R, et al. Development and characterization of nanocomposite materials. Mater Sci Eng C. 2007;27(5-8):1260-4.

Peres-Durand S, Rouviere J, Guizard C. Sol-gel processing of titania using reverse micellar systems as reaction media. Colloids Surf A Physicochem Eng Asp. 1995;98(3):251-70.

Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH. Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol. 2007;67(9):1813-22. 7. Kim JW, Kim LU, Kim CK. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules. 2007;8(1):215-22.

Sodagar A, Bahador A, Khalil S, Saffar Shahroudi A, Zaman Kassaee M. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res. 2013;57(1):15–9.

Park BS, Smith DM, Thoma SG. Determination of agglomerate strength distributions, Part 4. Analysis of multimodal particle size distributions. Powder Technol. 1993;76(2):125- 33.

Mandzy N, Grulke E, Druffel T. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol. 2005;160(2):121-6.

Taurozzi JS, Hackley VA, Wiesner MR. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment issues and recommendations. Nanotoxicology. 2011;5(4):711-29.

Nguyen VS, Rouxel D, Hadji R, Vincent B, Fort Y. Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason Sonochem. 2011;18(1):382-8.

Ruan B, Jacobi AM. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett. 2012;7(1):127.

Taurozzi JS, Hackley VA, Wiesner MR. Preparation of Nanoparticle Dispersions from Powdered Material Using Ultrasonic Disruption. NIST Special publication. 2012;1200(2):1200-2.

Yilmaz C, Korkmaz T. The reinforcement effect of nano and microfillers on fracture toughness of two provisional resin materials. Mater Des. 2007;28(7):2063-70.

Zachariah MR, Carrier MJ. Molecular dynamics computation of gas-phase nanoparticle sintering: A comparison with phenomenological models. J Aerosol Sci. 1999;30(9):1139-51.

Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res. 2009;11(1):77-89.

Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54(17-18):4051-68 19.

Sauter C, Emin MA, Schuchmann HP, Tavman S. Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem. 2008;15(4):517-23.

Löning JM, Horst C, Hoffmann U. Investigations on the energy conversion in sonochemical processes. Ultrason Sonochem. 2002;9(3):169- 79.

Mahbubul IM, Saidur R, Amalina MA. Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf. 2012;55(4):874-85.

Zhu H, Li C, Wu D, Zhang C, Yin Y. Preparation, characterization, viscosity and thermal Vol 6(2) Abdalqadir et al. 37 conductivity of CaCO3 aqueous nanofluids. Sci China Technol Sci. 2010;53(2):360-8.

Kole M, Dey TK. Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nanofluids. Thermochim Acta. 2012;535:58-65.

Mahbubul IM, Chong TH, Khaleduzzaman SS, Shahrul IM, Saidur R, Long BD, et al. Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid. Ind Eng Chem Res. 2014;53(16):6677-84.

Sato K, Li JG, Kamiya H, Ishigaki T. Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. J Am Ceram Soc. 2008;91(8):2481– 7.

Yang Y, Grulke EA, Zhang ZG, Wu G. Thermal and rheological properties of carbon nanotube-in- oil dispersions. J Appl Phys. 2006;99(11):114307.

Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys. 2007;9(10):367.

Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem. 2017;37:360-7.

Li F, Li L, Zhong G, Zhai Y, Li Z. Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu- ethylene glycol (EG) nanofluids. Int J Heat Mass Transf. 2019;129:278-86.



How to Cite

Dispersion of Zinc Oxide Nanoparticles in Maxillofacial Silicone Elastomer by Ultrasonication: A Morphological Study. (2019). Sulaimani Dental Journal, 6(2), 7. https://doi.org/10.17656/sdj.10094